CIO Influence
CIO Influence News Robots

Bristol Scientists Develop Insect-Sized Flying Robots With Flapping Wings

aPriori Appoints Three Executives to Support Global Growth for its Digital Manufacturing Intelligence Solutions

A new drive system for flapping wing autonomous robots has been developed by a University of Bristol team, using a new method of electromechanical zipping that does away with the need for conventional motors and gears.

This new advance, published today in the journal Science Robotics, could pave the way for smaller, lighter and more effective micro flying robots for environmental monitoring, search and rescue, and deployment in hazardous environments.

Until now, typical micro flying robots have used motors, gears and other complex transmission systems to achieve the up-and-down motion of the wings. This has added complexity, weight and undesired dynamic effects.

Recommended ITech News: Appgate Appoints Leo Taddeo as Chief Information Security Officer, President of Appgate Federal Division

Taking inspiration from bees and other flying insects, researchers from Bristol’s Faculty of Engineering, led by Professor of Robotics Jonathan Rossiter, have successfully demonstrated a direct-drive artificial muscle system, called the Liquid-amplified Zipping Actuator (LAZA), that achieves wing motion using no rotating parts or gears.

The LAZA system greatly simplifies the flapping mechanism, enabling future miniaturization of flapping robots down to the size of insects.

In the paper, the team show how a pair of LAZA-powered flapping wings can provide more power compared with insect muscle of the same weight, enough to fly a robot across a room at 18 body lengths per second.

They also demonstrated how the LAZA can deliver consistent flapping over more than one million cycles, important for making flapping robots that can undertake long-haul flights.

Recommended ITech News: Windstream Wholesale To Connect To AUBix Data Center In Auburn, Alabama

The team expect the LAZA to be adopted as a fundamental building block for a range of autonomous insect-like flying robots.

Dr Tim Helps, lead author and developer of the LAZA system said “With the LAZA, we apply electrostatic forces directly on the wing, rather than through a complex, inefficient transmission system. This leads to better performance, simpler design, and will unlock a new class of low-cost, lightweight flapping micro-air vehicles for future applications, like autonomous inspection of off-shore wind turbines.”

Professor Rossiter added: “Making smaller and better performing flapping wing micro robots is a huge challenge. LAZA is an important step toward autonomous flying robots that could be as small as insects and perform environmentally critical tasks such as plant pollination and exciting emerging roles such as finding people in collapsed buildings.”

Recommended ITech News: Nintex to Showcase Automation Innovations during Nintex ProcessFest 2022

[To share your insights with us, please write to sghosh@martechseries.com]

Related posts

Croquet Launches Edge Collaboration Platform and Global Developer Infrastructure for Creating Real-Time, Multi-User Web and Mobile Applications

Hitachi High-Tech Launches the Easy-to-Use AFM100 and AFM100 Plus Atomic Force Microscopes

CIO Influence News Desk

ThunderSoft Showcased Smart Device Innovation Solutions at MWC2024

PR Newswire

Leave a Comment