CIO Influence
AIOps CIO Influence News Networking

Winbond HyperRAM™ & SpiStack® and Renesas RZ/A2M accelerate the construction of embedded artificial intelligence (AI) systems

Kloudspot™ and Cisco Meraki Enable Safe Environments and Smart Spaces

Winbond Electronics Corporation, a leading global supplier of semiconductor memory solutions, announced the official confirmation that its HyperRAM and SpiStack can be operated with Renesas’ RZ/A2M Arm based microprocessors (MPUs). Customers of the RZ/A2M can benefit from Winbond’s long-term supply for various types of external memory, including DRAM, NOR Flash, and NAND Flash which are currently the mainstream of embedded systems.

Renesas’ RZ/A2M is suitable for Human Machine Interface (HMI), especially HMI applications with cameras. It supports Mobile Industry Processor Interface (MIPI), a camera interface that is widely used in mobile devices, and is equipped with a dynamically reconfigurable processor (DRP) for high-speed image processing. The RZ/A2M also features two Ethernet channels and it can enhance security functions with a cryptographic hardware accelerator. Thus, the RZ/A2M provides safe and secure high-speed network connection which can be used for image recognition in broad system applications, from consumer electronics to industrial equipment.

Recommended ITech News: Nozomi Networks Launches ADVantage Partner Program

Winbond HyperRAM is ideal for embedded AI and image processing for classification, in which the electronics circuit needs to be made as small as possible, while providing sufficient storage and data bandwidth to support compute-intensive workloads such as image recognition, and SpiStack, on the other hand, gives designers the flexibility to store code in the NOR die and data in the NAND die with smallest form-factor.

The following is an example of a system configuration for embedded-AI, combining Winbond HyperRAM and SpiStack with Renesas RZ/A2M:

  • Winbond HyperRAM: It can be used as a working memory, which is more suitable for embedded AI and image processing on AIoT device.
  • Winbond SpiStack (NOR+NAND): Store the boot code and application code for the RZ/A2M on the NOR side. Multiple large-sized data such as learning data for embedded AI and camera images can be stored on the NAND side.
  • Renesas RZ/A2M: Executes high-speed processing of embedded AI imaging application using MIPI camera and DRP.

Recommended ITech News: Anritsu and Samsung Extend Collaboration to Deliver Latest 5G Release 16 Technology

Winbond Product Features:
HyperRAM can operate at a maximum frequency of 200MHz and provide a maximum data-transfer rate of 400MB/s with either 3.3V or 1.8V operation voltage. It also offers ultra-low power consumption in operating and hybrid sleep modes. Take Winbond’s 64Mb HyperRAM as an example, in room temperature, the standby power consumption is 70uW at 1.8V, and most importantly, power consumption of HyperRAM has only 35uW at 1.8V in Hybrid Sleep Mode. In addition, HyperRAM has only 13 signal pins, which can greatly simplify the PCB layout design. When designers design the end products, it allows MPUs to have more pins out for other purposes or using MPUs with fewer pins for better cost-effectiveness.

Winbond SpiStack (NOR+NAND) is formed by stacking a NOR die and a NAND die into one package, such as a 64Mb Serial NOR with a 1Gb QspiNAND die, which gives designers the flexibility to store code in the NOR die and data in the NAND die. SpiStack with NOR+NAND has only 6 signal pins, regardless of the number of stacked dies. The active die is switched by a simple software die selection command (C2h) with a factory-assigned die ID number. The clock rate can up to 104MHz, an equivalent of 416MHz under Quad-SPI. Additionally, SpiStack (NOR+NAND) supports concurrent operation, one of the dies could program/erase while the other die could program/erase/read at the same and vice versa.

Recommended ITech News: Microsoft Gold Partner, I.T. Responsive Joins Best in Class Managed Service Provider, New Charter Technologies

Comment from Shigeki Kato, Vice President of the Enterprise Infrastructure Business Division at Renesas
“As embedded AI systems become more sophisticated and complex, the use of RZ/A2M with external memory can support the increasing data size of application code or trained models,” says Renesas. “With the confirmation that RZ/A2M can operate with Winbond HyperRAM & SpiStack, customers will be able to obtain external RAM and Flash from Winbond all at once, and use our product without any concerns.”

Comment from Naoki Mimura, General Manager of Marketing & FAE Division at Winbond Japan
“By adopting Winbond’s HyperRAM and SpiStack (NOR+NAND), it is possible to reduce the mounting area of memory on the PCB, the number of wires, and the BOM cost,” said Winbond. “Both package sizes are only 8x6mm, there are 13 signals for HyperRAM and 6 signals for SpiStack (NOR+NAND). Compared to conventional SDRAM and parallel NOR/NAND, both of the package size and the number of terminals have been reduced by around 80%. Together with Renesas RZ/A2M, users can enjoy total memory solution provided by Winbond.”

Recommended ITech News: The Point of Sale Cloud Launches as the Next Generation Solution for Multi-Unit Restaurants

Related posts

ThreatQuotient Bridges Artificial Intelligence with Threat Intelligence in the SOC

Business Wire

Windstream Enterprise Launches LAN Services with Fortinet Technology for Enhanced Security, Business Intelligence and End-User Experiences

Business Wire

New York Public Library and Celona Team to Shrink the Digital Divide by Bringing Free Internet Access

Leave a Comment